THE BOOK
Some of the ideas discussed in this blog are published in my new book called "The Stonehenge Bluestones" -- available by post and through good bookshops everywhere. Bad bookshops might not have it....
To order, click
HERE

Friday 5 July 2019

Was there a Devensian ice stream in the Celtic sea arena?


Ice streams around the northern sector of the Laurentide Ice Sheet, shown with relation to reconstructed ice sheet edges.  The Hudson Bay Ice Stream appears to have flowed in a distinct channel while bounded by more sluggish ice.  The only ice stream that appears to have flowed as a lobe beyond the ice sheet edge was the McClure Ice Stream, but it too flowed through a highly constrained trough between islands like a great outlet glacier.  It was probably bounded by local ice caps. It does not provide a good analogue for the Celtic Sea arena.

On the matter of the name we should give to the 80,000 sq km ice mass that occupied the Celtic Sea arena in the Late Devensian, this very comprehensive article is of great interest and relevance.  Scourse et al  (2019) have suggested that the Hudson Bay ice lobe is a reasonable comparator for the BIIS that they consider pressed all the way out to the shelf edge — but the authors of this article suggest that nearly all of the identified ice streams around the edges of the Laurentide Ice Sheet were typographically constrained — in other words, they flowed in great troughs bounded by uplands.  The Hudson Bay Ice stream was no exception, and it did not apparently extend beyond the edge of the ice sheet itself at any stage.  

Reference (recommended reading!)

Margold, M., Stokes, C.s & Clark, C. (2015). Ice streams in the Laurentide Ice Sheet: Identification, characteristics and comparison to modern ice sheets. Earth-Science Reviews. 20. Volume 143, April 2015, Pages 117-146

10.1016/j.earscirev.2015.01.011.

ABSTRACT

This paper presents a comprehensive review and synthesis of ice streams in the Laurentide Ice Sheet (LIS) based on a new mapping inventory that includes previously hypothesised ice streams and includes a concerted effort to search for others from across the entire ice sheet bed. The inventory includes 117 ice streams, which have been identified based on a variety of evidence including their bedform imprint, large-scale geomorphology/topography, till properties, and ice rafted debris in ocean sediment records. Despite uncertainty in identifying ice streams in hard bedrock areas, it is unlikely that any major ice streams have been missed. During the Last Glacial Maximum, Laurentide ice streams formed a drainage pattern that bears close resemblance to the present day velocity patterns in modern ice sheets. Large ice streams had extensive onset zones and were fed by multiple tributaries and, where ice drained through regions of high relief, the spacing of ice streams shows a degree of spatial self-organisation which has hitherto not been recognised. Topography exerted a primary control on the location of ice streams, but there were large areas along the western and southern margin of the ice sheet where the bed was composed of weaker sedimentary bedrock, and where networks of ice streams switched direction repeatedly and probably over short time scales. As the ice sheet retreated onto its low relief interior, several ice streams show no correspondence with topography or underlying geology, perhaps facilitated by localised build-up of pressurised subglacial meltwater. They differed from most other ice stream tracks in having much lower length-to-width ratios and have no modern analogues. There have been very few attempts to date the initiation and cessation of ice streams, but it is clear that ice streams switched on and off during deglaciation, rather than maintaining the same trajectory as the ice margin retreated. We provide a first order estimate of changes in ice stream activity during deglaciation and show that around 30% of the margin was drained by ice streams at the LGM (similar to that for present day Antarctic ice sheets), but this decreases to 15% and 12% at 12 cal ka BP and 10 cal ka BP, respectively. The extent to which these changes in the ice stream drainage network represent a simple and predictable readjustment to a changing mass balance driven by climate, or internal ice dynamical feedbacks unrelated to climate (or both) is largely unknown and represents a key area for future work to address.

No comments: