THE BOOK
Some of the ideas discussed in this blog are published in my new book called "The Stonehenge Bluestones" -- available by post and through good bookshops everywhere. Bad bookshops might not have it....
To order, click
HERE

Saturday, 20 July 2019

The stone sledge theory gets even more bonkers



Another example of a university press release designed for maximul media impact — and to hell with common sense.  This time the culprit is the Universityb of Newcastle, with one of the more ludicrous headlines..........

Stonehenge may have been built using lard
Published on: 15 July 2019

Pig fat could have been used to grease the sledges used to transport the massive stones of Stonehenge into position, new analysis by archaeologists at Newcastle University has suggested.

Quote:
“There's a general assumption that the traces of animal fat absorbed by these pieces of pottery were related to the cooking and consumption of food. But these residues could be tantalising evidence of the greased sled theory. “.    Dr Lisa-Marie Shillito

Absorbed fat residues

Fat residues on shards of pottery found at Durrington Walls, near Stonehenge, have long been assumed to be connected with feeding the many hundreds of people that came from across Britain to help construct the ancient monument.

But, new analysis by archaeologists at Newcastle University, UK, suggests that because the fragments came from dishes that would have been the size and shape of buckets, not cooking or serving dishes, they could have been used for the collection and storage of tallow – a form of animal fat.

Dr Lisa-Marie Shillito, Senior Lecturer in Landscape Archaeology, Newcastle University, said: “I was interested in the exceptional level of preservation and high quantities of lipids – or fatty residues - we recovered from the pottery. I wanted to know more about why we see these high quantities of pig fat in pottery, when the animal bones that have been excavated at the site show that many of the pigs were ‘spit roasted’ rather than chopped up as you would expect if they were being cooked in the pots.”

'Greased sled' theory

It is now generally accepted that the huge megaliths that make up Stonehenge were moved by human effort. Recent experiments have suggested that the stones - up to eight metres high and weighing as much as two tonnes - could have been moved by 20 people by placing them on a sled and sliding them over logs.

The pottery at Durrington Walls is one of the best studied for organic residues, with over 300 shards having been analysed as part of wider studies of Grooved Ware use in Britain, and more recently the Feeding Stonehenge project, on which Dr Shillito worked.

Analysis of residues of absorbed fat is a well-established technique for revealing what foods different type of pottery was used for. But more attention needs to be paid to how this information is interpreted, Dr Shillito argues.

“There are still many unanswered questions surrounding the construction of Stonehenge”, she says. “Until now, there has been a general assumption that the traces of animal fat absorbed by these pieces of pottery were related to the cooking and consumption of food, and this steered initial interpretations in that direction. But there may have been other things going on as well, and these residues could be tantalising evidence of the greased sled theory.

“Archaeological interpretations of pottery residues can sometimes only give us part of the picture. We need to think about the wider context of what else we know and take a ‘multi-proxy’ approach to identify other possibilities if we hope to get a better understanding.”

Reference: ‘Building Stonehenge? An alternative interpretation of lipid residues in Grooved Ware from Durrington Walls’ Lisa-Marie Shillito, Antiquity https://doi.org/10.15184/aqy.2019.62

========================

There is of course not a shred of evidence to link the traces of animal fat on bits of pottery with Stonehenge, bluestones or sarsens, or sledges.  It is entirely to be expected that in a society using animal products in the food supply, tallow or animal fat would have been stored in large vessels and used for a variety of “non-food” purposes including lighting, lubricating the moving parts on weapons or domestic items, building, etc.  But to jump straight in on the idea that the “lard” was possibly used for lubricating stone-hauling sledges — implying some sort of manufacturing facility used by the civil engineers — is really completely ludicrous.  Have these people no shame?

PS.  Quote:  “It is now generally accepted that the huge megaliths that make up Stonehenge were moved by human effort. Recent experiments have suggested that the stones - up to eight metres high and weighing as much as two tonnes - could have been moved by 20 people by placing them on a sled and sliding them over logs.”
One wonders how an academic like Dr Shillito can be so poorly informed that she trots out this sort of nonsense without batting an eyelid, in the full knowledge that it is not true.  It is NOT generally accepted.... the weights and dimensions cited indicate that she has got her bluestones and her sarsens mixed up, and the experiments to which she refers were conducted on the flat grass of a London park, and do NOT  suggest that 20 people could have moved large monoliths great distances across rough country.  What was I saying about the death of evidence...? 


Waun Mawn --the strange art of seeing the invisible and missing the obvious


I have been reviewing the Waun Mawn evidence, and have been struck again by the apparent determination of MPP and his team to see things that aren't there and to miss the things that are.  For a start, they seem determined to ignore the fact that there are outcropping dolerites just a stone's throw from their putative proto-Stonehenge circle of standing stones.  They so badly WANT the stones to have come from somewhere else (namely bluestone quarries) that they apparently refuse even to consider the idea that any stones erected on this site may well just have been picked up locally:

https://brian-mountainman.blogspot.com/2018/05/waun-mawn-and-invisible-dolerites.html

Then we have all the other rather interesting features on Waun Mawn -- all the other standing stones, stone sockets, possible ruined burial sites, ring cairns, deer park enclosure traces, quarrying pits, embankments and so forth.  Not all of them are prehistoric and relevant for the proto-Stonehenge debate, but some of them certainly are ......

https://brian-mountainman.blogspot.co.uk/2011/09/tafarn-y-bwlch-stone-complex-waun-mawn.html

https://brian-mountainman.blogspot.co.uk/2016/08/deer-hunting-on-waun-mawn.html

https://brian-mountainman.blogspot.co.uk/2016/08/gernos-fach-ring-cairn.html

https://brian-mountainman.blogspot.co.uk/2011/09/prophecy-fulfilled.html

And all these features on nearby Banc Llwydlos:

https://brian-mountainman.blogspot.co.uk/2015/05/lake-brynberian-further-thoughts.html

https://brian-mountainman.blogspot.co.uk/2015/05/devensian-till-on-brynberian-moor.html

https://brian-mountainman.blogspot.co.uk/2017/04/banc-llwydlos-passage-grave.html

https://brian-mountainman.blogspot.co.uk/2017/04/gallery-graves-or-passage-graves.html

https://brian-mountainman.blogspot.co.uk/2017/04/more-banc-llwydlos-records.html

https://brian-mountainman.blogspot.co.uk/2017/04/banc-llwydlos-cromlech-3.html

Why is it that thus far the archaeologists appear not even to have noticed any of these features?  Strange, given that they point to a rather interesting cultural complex around Tafarn y Bwlch, Waun Mawn and Banc Llwydlos.  Does it not suit their purpose to emphasise all these other traces of Neolithic / Bronze Age settlement?

Or are the archaeologists so intent on proving the uniqueness of the supposed Waun Mawn circle that all other features in the vicinity have to be ignored?

I admit to being puzzled.......

Friday, 19 July 2019

Post-processualism and the death of evidence




Last year, I published this little flow chart that seemed to me to represent the way in which MPP and his colleagues actually work.  Unwittingly, have we identified the working methods of the post-processualists?


In a recent post about "what Prof MPP thinks" we mentioned his comments about the rise and rise of post-processualism (horrible expression!) in archaeology:

https://brian-mountainman.blogspot.com/2019/06/what-mpp-thinks.html

There is a vast literature out there, and it all gets very philosophical and convoluted; whole courses in Archaeology Departments are no doubt devoted to in-depth analyses of all the pros and cons of the processual method (stressing objectivity and the use of scientific deduction) versus the post-processual method (stressing subjectivity and the erratic nature of human behaviour).

As fellow bloggers will know, I cannot understand the cavalier attitude which MPP and his colleagues have towards hard evidence in the field -- if there is no evidence in support of a central hypothesis, never mind -- it's not really needed.  All we have to do is understand human motivation and human behaviour, and if we need to invent some evidence to support what we are saying, that's OK too.  To hell with the scientific method -- this is the ARCHAEOLOGICAL method, and nobody is going to apologise for it.  So there is a vast gulf of misunderstanding between people like me, brought up to respect science, and people like MPP, presumably brought up to try and understand why human beings occasionally do rather wacky things...........

Interestingly enough, the lack of respect for the scientific method -- including peer review and scrutiny -- seems also to spread to funding organizations and journal editors.  More than once, I have wondered, in blog posts, how on earth certain papers by the MPP team have found their way into print.

Here is one summary of the debate:
Post-Processual Archaeology - What is Culture in Archaeology Anyway?
The Radical Critique of the Processual Movement in Archaeologyhttps://www.thoughtco.com/what-is-post-processual-archaeology-172230

A summary by Kris Hirst:

Post-processual archaeology was a scientific movement in archaeological science that took place in the 1980s, and it was explicitly a critical reaction to the limitations of the previous movement, the 1960s' processual archaeology.

In brief, processual archaeology strictly used the scientific method to identify the environmental factors that influenced past human behaviors. After two decades, many archaeologists who had practiced processual archaeology, or had been taught it during their formative years, recognized that processual archaeology failed when it attempted to explain variability in past human behavior. The post-processualists rejected the deterministic arguments and logical positivist methods as being too limited to encompass the wide variety of human motivations.


And her conclusions:

The Costs and Benefits

The issues that were unearthed during the height of the post-processual movement are still not resolved, and few archaeologists would consider themselves post-processualists today. However, one outgrowth was the recognition that archaeology is a discipline that can use a contextual approach based on ethnographic studies to analyze sets of artifacts or symbols and look for evidence of belief systems. Objects may not simply be the residues of behavior, but instead, may have had a symbolic importance that archaeology can at least work at getting.

And secondly, the emphasis on objectivity, or rather the recognition of subjectivity, has not subsided. Today archaeologists still think about and explain why they chose a specific method; create multiple sets of hypotheses to make sure they aren't being fooled by a pattern; and if possible, try to find a social relevance. After all, what is science if it's not applicable to the real world?

Wednesday, 17 July 2019

Liverpool Land piedmont glacier apron


There is evidence in eastern Jameson Land of till having been laid down by westward-flowing glaciers.  These came from the Liverpool Land mountains and coalesced into a broad apron filling a wide transverse trough.  When the ice in the apron thickened sufficiently, flow was diverted northwards and southwards.



On this Google image we can see what a substantial through valley this is.  During the Late Devensian the piedmont glacier apron that occupied it was so thick that it spilled westwards onto the higher part of Jameson Land.

We have talked a lot about piedmont glaciers on this blog, in relation to glaciers decanting from troughs or fjords out onto adjacent lowlands — but not much about piedmont APRONS.  These are rather interesting, since they consist of  coalescing piedmont glaciers which spread laterally.

The Liverpool Land (East Greenland) example is an interesting one, and a number of authors have referred to the wide apron of glacier ice that filled the deep through valley connecting Hurry Fjord in the south to Carlsberg Fjord in the north.  This happened in the last glacial maximum (LGM) and probably in all preceding glaciations as well.  The glaciers flowing westwards came from the alpine mountain range of Liverpool Land.  On the east side of the mountains the glaciers coalesced on the open coast, and there may well have been a calving ice shelf.

According to the reconstructions, the coalescing piedmont glaciers filled the transverse trough and then flowed northwards and southwards towards the coast.  This must have happened in multiple locations in the arctic — and we can see examples today from Greenland, Arctic Canada and Arctic Russia.  We have referred in an earlier post to Putorana:


Putorana — the mountain front runs across the photo, and the morainic loops show how the individual glaciers coalesced into an extensive ”glacier apron”.

Here are some more classic photos of piedmont (unconstrained) glaciers -- in Arctic Canada and north Greenland:


In the above photo three piedmont glaciers have combined to create an apron.





Tuesday, 16 July 2019

Salisbury Plain LIDAR imagery

This is very impressive and informative.  Courtesy Mark Walters.  You need a good computer with a touch screen to get the best out of it.......


Will try to embed:

Friday, 12 July 2019

More on the Scoresby Sund piedmont glacier


In this interpretation it is argued that the whole of Jameson Land was deeply submerged beneath ice from the Greenland ice Sheet during the Salian Glaciation.  Glacial deposits referred to the "older drift" glaciation are dated to this phase, as are some of the glacial deposits found in the "driftless" area.  Other deposits in that area are assumed to be even older -- and are largely destroyed.  The "newer drift" deposits are dated to the LGM or Late Weichselian: these are closer to the coast, and suggest that the ice from the piedmont Glacier pressed inland up to altitudes around 250m, buttressed by cold and non-erosive ice formed on the Jameson Land uplands.  This ice cap covered and protected older deposits.  Other active glaciers flowed westwards, down from the accumulation areas on the mountains of Liverpool Land, maybe feeding a south-flowing glacier in Hurry Fjord..

This is an important paper from which I have quoted before -- check things out by doing a search for "Jameson Land."

https://www.academia.edu/17754297/Late_Pleistocene_glacial_history_of_Jameson_Land_central_East_Greenland_derived_from_cosmogenic_10_Be_and_26_Al_exposure_dating

Hakansson, L., Alexanderson, H., Hjort, C., Moller, P., Briner, J. P., Aldahan, A. & Possnert, G.: 2008.  Late Pleistocene ¨ glacial history of Jameson Land, central East Greenland, derived from cosmogenic 10Be and 26Al exposure dating. Boreas, Vol. 38, pp. 244–260.
10.1111/j.1502-3885.2008.00064.x. ISSN 0300–9483.

Previous work has presented contrasting views of the last glaciation on Jameson Land, central East Greenland, and still there is debate about whether the area was: (i) ice-free, (ii) covered with a local non-erosive ice cap(s), or (iii) overridden by the Greenland Ice Sheet during the Last Glacial Maximum (LGM). Here, we use cosmogenic exposure ages from erratics to reconcile these contrasting views. A total of 43 erratics resting on weathered sandstone and on sediment-covered surfaces were sampled from four areas on interior Jameson Land; they give 10Be ages between 10.9 and 269.1 kyr. Eight erratics on weathered sandstone and till-covered surfaces cluster around 70 kyr, whereas 10Be ages from erratics on glaciofluvial landforms are substantially younger and range between 10.9 and 47.2 kyr. Deflation is thought to be an important process on the sediment-covered surfaces and the youngest exposure ages are suggested to result from exhumation. The older (470 kyr) samples have discordant 26Al and 10Be data and are interpreted to have been deposited by the Greenland Ice Sheet several glacial cycles ago. The younger exposure ages ( 70 kyr) are interpreted to represent deposition by the ice sheet during the Late Saalian and by an advance from the local Liverpool Land ice cap in the Early Weichselian. The exposure ages younger than Saalian are explained by periods of shielding by non-erosive ice during the Weichselian glaciation. Our work supports previous studies in that the Saalian Ice Sheet advance was the last to deposit thick sediment sequences and western erratics on interior Jameson Land. However, instead of Jameson Land being ice-free throughout the Weichselian, we document that local ice with limited erosion potential covered and shielded large areas for substantial periods of the last glacial cycle.

---------------------------------

Then there is this -- the article itself is behind a paywall, but we get the gist of it from the abstract:



LARS RONNERT and MATS R. NYBORG, 1994.  The distribution of different glacial landscapes on southern Jameson Land, East Greenland, according to Landsat Thematic Mapper Data.
Boreas, Volume 23, Issue 4
Pages: 281-536
December 1994

https://doi.org/10.1111/j.1502-3885.1994.tb00603.x

Abstract


Four geologic units previously mapped in southern Jameson Land. East Greenland (Funder 1978, 1990) are identifiable on a false colour composite of Landsat Thematic Mapper (TM) spectral hands TM5. TM4 and TM1. The area covered by the Weichselian glaciations has a fresh glacial morphology and a less developed drainage system than the older landscape. The Weichselian glaciers reached more than 200 m a.s.l. in the west. but only about 100 m a.s.l. in the east. A contextual analysis (local frequency and local orientation) was included in a Maximum Likelihood classification (M‐L) to map the extent of the Weichselian glaciations. Deposits correlated with the Saalian Scoreshy Sund glaciation are found on the central plateaux of Jameson Land. Landsat TM geological mapping of the surficial distribution of deposits from the Scoreshy Sund glaciation and of weathered Jurassic sandstone or deposits with a high percentage of such sandstone was done using a supervised Maximum Likelihood procedure. Except for the mapping of thc extent of the Late Weichselian Flakkerhuk glaciation, the Maximum Likelihood boundaries between units are in general agrecnient with earlier mapping or with the visual interpretation of the false colour composite. A strong vegetational influence. and similar spectral reflectance lrom deposits of different age due to similarities in lithological composition reduced the possibility of an independent remote sensing approach. Taking already existing general geological knowledge and chronology into account allowed successful Landsat TM geological mapping.

The Scoresby Sund piedmont glacier

The LGM maximum (Flakkerhuk) stage is shown by the location of the Kap Brewster moraine complex.  When the ice front was at that position Scoresby Sund and Jameson Land must have been covered by a very large piedmont lobe.  Evidence suggests that the ice was grounded all the way out to the Kap Brewster moraine. The Milne Land stage, around 10,000 years ago, represents a readvance which did not progress much beyond the trough exits.  Note from the text below that some researchers believe that Jameson Land was covered at the time of the LGM and others think it was ice-free!

On pondering about the nature of the Celtic Sea piedmont glacier, I am focussing more and more on Nordvestfjord, Scoresbysund and Jameson Land.  The parallels are striking.  In Nordvestfjord, a very large outlet glacier / ice stream like the Irish Sea Glacier, inputs from the flanks like those that came in from the Welsh ice cap and the Irish ice cap, a sudden deceleration / decanting of ice (Hall Bredning and St George's Channel), further inputs from the west (glacier ice from the Renland and Milne Land glaciers and in the case of the Celtic Sea piedmont, from southern Ireland) and finally a spreading of the ice southwards and eastwards over gentler terrain (Scoresbysund and Jameson Land in the case of Greenland and the Celtic Sea floor and the Bristol Channel floor -in the British case -- both probably above relative sea-level at the time -- so there would have been no ice shelves) -- except maybe off the set coast.

The Scoresby Sound piedmont was apparently grounded -- the water depth in the sound today is between 400m and 600m (much shallower water than in the feeder fjords).  Global sea level at the time was probably more than 100m lower than today.  But there were much greater isostatic depressions and rebounds here than in the Celtic Sea -- the implications need careful thought......


Running diagonally across this satellite image -- Nordvestfjord. the biggest of the outlet glacier routes.  Hall Breeding is speckled with icebergs.


Nordvestfjord landscape -- near the entrance of Gurreholmsdal. The trough walls are in places almost 2,000 m high -- and the fjord water is in places more than 1,500 m deep.  So the trough depth is c 3,500m or about 11,000 feet.


Fjord walls typical of the fjord system, near the Bear Islands.  Renland in the background  -- a "vertical landscape".....


Jameson Land -- a rolling lowland with ancient valleys and low hill masses.  For many years it was thought that the landscape bore no traces of glaciation.....  



Two images of the Jameson Land tundra landscape -- by contrast with the fjord landscape, this is dominated by wide horizons and "horizontal" features.

=================

https://core.ac.uk/download/pdf/11771291.pdf

Gabriele Uenzelmann-Neben (1992) Scoresby Sund, East Greenland: Structure and Distribution of Sedimentary Rocks.
Polarforschung 62 (1): 1-9, 1992 (erschienen 1993)

In Scoresby Sund, the Pleistocene was a time characterized by erosion. Thicker deposits can be found only at the valley mouths, high mountain plateaus and the coast of Jameson Land (FUNDER 1990). The occurrence pattern of Quaternary sediments documents a number of glacial-interglacial cycles. The oldest sediments (Lodin Elv formation) found on land are of Pliocene/Pleistocene age. The most expanded glaciation, the Scoresby Sund Glacial, occurred around 200 ka (FUNDER 1972, 1984, 1989) and represents an important stratigraphic marker (HJORT & MÖLLER 1991; HJORT & SALVIGSEN 1991). Sediments deposited during the Langelandselv Interglacial (Eemian 120 ka, FUNDER 1990) can be found only along the southwestern coast of Jameson Land. This interglacial showed higher temperatures than the present and can be correlated with isotopic stage Se (BÖCHER & BENNICKE 1991). The first two Early Weichselian glacials (Glaciation 1 and 2 during the Jameson Land Marine Episode) showed neither an ice cover of the outer fjord areas (FUNDER 1989) nor of Jameson Land (FUNDER et al. 1991). During the Flakkerhuk Glacial (late Early Weichselian, FUNDER et al. 1991) a thick floating glacier extended out onto the shelf while Jameson Land stayed uncovered (FUNDER 1989, 1990). Glaciation 4 (Late Weichselian, FUND ER et al. 1991) commenced about 20 to 13 ka. Until present, it has been considered to be a minor glacial stage. Thick glaciers terminated at the mouths of the western fjords into Hall Bredning and Scoresby Sund during the Milne Land Stage (11 - 9.5 ka, HJORT 1979). After a continuous retreat of the glaciers astandstill followed during the Rodefjord Stage (FUNDER 1971). The end of that phase resembles the present ice extent.

Some refs

Dowdeswell, JA, Villinger, H., Whittington, R.J. & Marienfeld, P. (1991): The Quaternary marine record in the Scoresby Sund fjord system, East Greenland: preliminary results and interpretation. In: P. Möller.; Ch. Hjort & O. Ingolfsson, eds., The last interglacial-glacial cycle: preliminary report on the PONAM fieldwork in Jameson Land and Scoresby Sund, East Greenland. Lundqua Reports 33: 149-156, Lund.

Dowdeswell, JA, Uenzelmann-Neben, G. & Whittington, R.J. (submitted): The Late Quaternary sedimentary record in Scoresby Sund, East Greenland. - Boreas.

Funder. S. (1971): Observations on the Quaternary Geology of the Rodefjord Region, Scoresby Sund. - Rapport Grenlands Geologiske Undersogelse 37, Copenhagen.

Funder. S. (1972): Remarks on the Quaternary geology of Jameson Land and adjacent areas, Scoresby Sund, East Greenland. - Rapports Gronlands Geologiske Undersogelse 48: 93-98, Copenhagen.

Funder. S. (1984): Chronology of the last interglacial/glacial cycle in Greenland: First approximation. - In: W.c. Mahaney (ed.), Correlation of Quaternary chronologies, 261-279, GeoBooks, Norwich,

Funder. S. (1989): Quaternary Geology of the ice-free areas and adjacent shelves of Greenland. - In: J.R. Fulton (ed.), Quaternary Geology of Canada and Greenland. Geological Survey of Canada, Geology of Canada No I.

Funder. S. (1990): Quaternary Map of Greenland, 1:500000, Sheet 12, Descriptive Text. - Geological Survey of Greenland, Copenhagen.

Funder. S.; Hjort, CH & Landvik, IY. (1991): Quaternary stratigraphy of Jameson Land - a first approximation. - In: P. Möller; Ch. Hjort & O. Ingolfsson eds., The last interglacial-glacial cycle: preliminary report on the PONAM fieldwork in Jameson Land and Scoresby Sund, East Greenland. Lundqua Reports 33: 171-176, Lund.

GEBCO (1980): General bathymetric chart of the oceans. - Chart No. 5.04, Canadian Hydrographie Service, Ottawa.

Hinz, K., Mutter, J.C., Zehnder, C.M. & NGT Study Group (1987): Symmetrie conjugation of continent-ocean boundary structures along the Norwegian and East Greenland Margins. Mar. Petr. Geology 4: 166-187.

Hjort, Ch. (1979): Glaciation in northern East Greenland during Late Weichselian and Early Flandrian. - Boreas 3: 281-296.

Hjort, Ch. & Möller P. (1991): Glacial deposits on the interior plateaux of Jameson Land, East Greenland. - In: P. Möller; Ch. Hjort & O. Ingolfsson (eds.), The last interglacial-glacial cycle: preliminary report on the PONAM fieldwork in Jameson Land and Scoresby Sund, East Greenland. Lundqua Reports 33: 7-22, Lund.

Hjort, Ch. & Salvigsen, O. (1991): The channel & tor-landscape in southeastern Jameson Land, East Greenland. - In: P. Möller; Ch.

Hjort & O. Ingolfsson (eds.), The last interglacial-glacial cycle: preliminary report on the PONAM fieldwork in Jameson Land and Scoresby Sund, East Greenland. Lundqua Reports 33: 23-26, Lund.

==========================

Another interesting paper:

Funder, S. & Hansen, L. (1996): The Greenland ice sheet - a model for its culmination and decay during and after the last glacial maximum. Bulletin of the Geological Society of Denmark, Vol. 42, pp. 137-152. Copenhagen, 1996-02-01.

https://2dgf.dk/xpdf/bull42-02-137-152.pdf

Extracts

Onshore studies at the mouth of Scoresby Sund have shown that the large grounded outlet glacier which filled the fjord basin during LGM, the Flakkerhuk stade, was thin and less than 400 m thick at the fjord mouth (Mangerud & Funder 1994; Tveranger, HoumarkNielsen, Løvberg & Mangerud 1994). It probably had its front on the "Kap Brewster sedimentary ridge", a 20 km wide, 175 m high, and more than 30 km long ridge of Quaternary sediments which has been located from air gun and bathymétrie data at the fjormouth (Fig. 4 and Dowdeswell, Uenzelmann-Neben, Whittington & Marienfeld 1994). This is in agreement with ice core studies on a local ice cap which showed that the Inland Ice during LGM was drained through the deep fjord troughs and never invaded the adjacent mountain plateaus at c. 2000 m a.s.l. (Johnsen, Clausen, Dansgaard, Gundestrup, Hansson, Jonsson, Steffensen & Sveinbjømsdottir 1992). Recent seismic studies have indicated that a similar but smaller moraine-like ridge occurs at the mouth of Kong Oscar Fjord to the north of Scoresby Sund, but is lacking from other fjords (Hubberten, Grobe, Jokat, Melles, Niessen & Stein 1995). Coring on the shelf and its edge at the mouth of Scoresby Sund and at Hochstetter Forland show maximum fluxes of terrigenous material and pulses of IRD indicating the presence of ice bergs and melt water from glacier fronts on the shelf between 16 and 21 ka. This was correlated with LGM in Scoresby Sund, the Flakkerhuk stade (Nam, Stein, Grobe & Hubberten 1995; Stein, Nam, Grobe & Hubberten in press). The history of the glacier in Scoresby Sund is discussed further below.

Scoresby Sund between 16 and 10 ka

The Scoresby Sund drainage system is the largest single outlet from the eastern margin of the Inland Ice. Owing to work during the PONAM Project this area has the most detailed record of events during and after LGM (Funder, Hjort & Landvik 1994), and current field work has added to this. The position of ice margins and key-14C dates are shown on Fig. 4, and details of the 14C-dates are given in Table 1. As noted above, a large outlet glacier filled the fjord system during LGM probably with its front on the Kap Brewster sedimentary ridge, between 16 and 21 ka (Fig.4). Six thousand years later, during the Milne Land stade, the glacier fronts had receded c. 150 km and uncovered the outer fjord basin. Current studies on western Jameson Land show that the glacial history during and after LGM began when the glacier in Scoresby Sund ran along the present coastline and deposited proglacial sediments along the margin and in blocked river valley basins. Next, during the peak of glaciation, the glacier expanded inland over the ice dammed lake basins, up to 15 kilometres from the coast and deposited thin and discontinuous till over the area. After this, the ice melted, maybe with lakes dammed against its margin. In the final collapse much of the land based ice was transformed to dead-ice as seen from the numerous kames. The retreating ice front was followed by marine water, and the present pattern of fluvial drainage was established with marine limit at c. 70 m above sea level in western Jameson Land. During the Milne Land stade the fjord glaciers advanced to positions on the western margin of the Scoresby Sund basin, but did not reinvade western Jameson Land (Fig. 4).




Thursday, 11 July 2019

Strange tale from the Mediterranean




Thanks to Dave for alerting me to this very strange and somewhat garbled article in The Independent — by David Keys,  one of our more gullible archaeological journalists:

https://www.independent.co.uk/news/science/archaeology/ancient-greece-archaeology-keros-aegean-sea-bronze-age-dhaskalio-bible-pyramids-crete-milos-a8997666.html

I have no ideas how serious or well-founded this may be — it may just be the latest hoax from a group of researchers desperate for some headlines.......

Will do some research and report back......... in the meantime, if anybody out there knows more, and would like to share info, please post your comments.

Giant marble pyramid-shaped island complex rising from sea uncovered, revealing secrets of ancient Greece’s origin

Exclusive: Thousands of years of history being unlocked in the Aegean isles which could provide groundbreaking knowledge of ancient civilisations.



Extracts:

Archaeologists now believe that, in order to construct the complex, early Bronze Age Greeks embarked on at least 3,500 maritime voyages to transport between 7,000 and 10,000 tonnes of shining white marble from one Aegean island to another.

Each return voyage would have required up to 24 crew members to paddle for around five hours.

“It is by far the largest prehistoric marine transport operation that has ever come to light anywhere in the world,” said Dr Julian Whitewright, a leading maritime archaeologist at the University of Southampton.

“It demonstrates quite clearly just how important, and integral to their culture, seafaring was to these early Bronze Age Aegean people.”

The voyages – totalling around 45,000 miles – allowed the architects to construct what is thought to have been a huge religious sanctuary consisting of up to 60 marble buildings, which were constructed specifically to glisten in the sun.

..........the architects “terra-formed” the pyramid-shaped island “mini-mountain”, known in recent centuries as Dhaskalio (possibly just meaning “islet”), to create around 1,000m of artificial terracing, arranged in six “steps” on its steep slopes.

These roughly six-metre wide terraces appear to have been built specifically to accommodate all the buildings. The summit itself was not initially built on – but instead had a small, probably sacred, open area where votive offerings may have been deposited.

Friday, 5 July 2019

More on ice gradients in the Celtic Sea arena



A winter photo of the Malaspina Glacier, the word's biggest piedmont glacier at the present time.



I have mulled over this topic before, because of the apparent mismatch between modelling work and "ground truthing" in which field evidence is crucial.  The diagram above shows assorted ice sheet long profiles, including some which accord reasonably well with the theoretical ice profile of an equilibrium glacier or ice sheet, and others (the red and green lines) which suggest that in some cases extremely low or "flat" profiles can be observed or deduced.  The diagram is from a 1973 article by Matthews, in which he wondered why glaciers with such low profiles could still move and be capable of eroding and transporting erratics and morainic materials.  See refs below.

The perfect piedmont glacier -- there are quite a few of them in North Greenland and Arctic Canada.  Generally the gradient of the feeder glacier is steeper, and the gradient on the piedmont part very flat..... 

The flat profiles come from the SW part of the Laurentide ice sheet and the "piedmont" glaciers flowing from the Cordilleran ice sheet. Lionel Jackson and colleagues have worked in areas affected by these glaciers, and have come to the view that gradients were often only about half as steep as those deduced by earlier researchers.  Without going into detail about shear stresses, basal sliding and internal deformation, there seems to be a rule that piedmont glaciers can have very low profiles as the ice spreads laterally across open country.  That makes sense,  and measured gradients are usually below 8m per kilometre and sometimes as low as 1m per kilometre.  

If we translate that into some crude figures for the Celtic Sea lobe, and if we assume for the moment that the long profile should be oriented from NE towards SW, as assumed by most researchers over the past 20 years, that means there could have been a grounded snout at -150m on the continental shelf edge and an ice surface at +250m about 400 km away in St George's Channel (if the gradient was 1m per km).  At the other extreme, with a gradient of 8m per km, the ice surface in St George's Channel would have been at +3050m -- more or less as I have previously assumed in earlier posts.   If we take a more modest figure of 4m per km, assuming the ice was dynamic enough to cross the Celtic Deep and still push southwards for 400 km, we get figures of -150m at the snout and +1,450m at the St George's Channel constriction point.

If the new suggestion from Scourse et al (2019) is to be taken seriously, glacially-forced isostatic depression on the shelf edge around 27,000 years ago must imply thicker rather than thinner ice, grounded over a substantial area.  No doubt the modelling people are hard at work on this issue as we speak...........

Whatever the models throw up, we have to explain the presence of a Devensian ice edge at about 300m on Carningli and about 250m on the north face of Mynydd Preseli -- and at assorted altitudes below 100m around the south Pembrokeshire coast.  Can these ice edge altitudes be accommodated in a scenario involving a very low long profile for the piedmont glacier in the Celtic Sea arena?  Watch this space......

========================

References

W. H. Mathews (1974) Surface profiles of the Laurentide ice sheet in its marginal areas. Jnl of Glaciology,  Volume 13, Issue 67 1974 , pp. 37-43.  Published online: 30 January 2017.

DOI: https://doi.org/10.3189/S0022143000023352

Jackson, L.E., Jr., Little, E.C, Leboe, E.R., and Holme, P.J., 1996: A re-evaluation of the paleoglaciology of the maximum continental and montane advances, southwestern Alberta; in Current Research 1996-A; Geological Survey ofCanada, p. 165-173.

Abstract: 
Controversy over the age of the maximum known advances of continental and montane glaciers in southwestern Alberta rests largely on the paleoglaciology of the maximum montane piedmont glacier. Reconstruction of it, based upon features that mark the former glacier surface in the Foothills, indicate that the glacier had a maximum surface gradient of 0.4-0.6° - less than half the value assumed by previous workers. The continental ice sheet that was roughly coeval with the piedmont glacier and coalesced with it in the Foothills. Paleoglaciological evidence favours a Late Wisconsinan age for maximum extent of continental and montane ice.






Was there a Devensian ice stream in the Celtic sea arena?


Ice streams around the northern sector of the Laurentide Ice Sheet, shown with relation to reconstructed ice sheet edges.  The Hudson Bay Ice Stream appears to have flowed in a distinct channel while bounded by more sluggish ice.  The only ice stream that appears to have flowed as a lobe beyond the ice sheet edge was the McClure Ice Stream, but it too flowed through a highly constrained trough between islands like a great outlet glacier.  It was probably bounded by local ice caps. It does not provide a good analogue for the Celtic Sea arena.

On the matter of the name we should give to the 80,000 sq km ice mass that occupied the Celtic Sea arena in the Late Devensian, this very comprehensive article is of great interest and relevance.  Scourse et al  (2019) have suggested that the Hudson Bay ice lobe is a reasonable comparator for the BIIS that they consider pressed all the way out to the shelf edge — but the authors of this article suggest that nearly all of the identified ice streams around the edges of the Laurentide Ice Sheet were typographically constrained — in other words, they flowed in great troughs bounded by uplands.  The Hudson Bay Ice stream was no exception, and it did not apparently extend beyond the edge of the ice sheet itself at any stage.  

Reference (recommended reading!)

Margold, M., Stokes, C.s & Clark, C. (2015). Ice streams in the Laurentide Ice Sheet: Identification, characteristics and comparison to modern ice sheets. Earth-Science Reviews. 20. Volume 143, April 2015, Pages 117-146

10.1016/j.earscirev.2015.01.011.

ABSTRACT

This paper presents a comprehensive review and synthesis of ice streams in the Laurentide Ice Sheet (LIS) based on a new mapping inventory that includes previously hypothesised ice streams and includes a concerted effort to search for others from across the entire ice sheet bed. The inventory includes 117 ice streams, which have been identified based on a variety of evidence including their bedform imprint, large-scale geomorphology/topography, till properties, and ice rafted debris in ocean sediment records. Despite uncertainty in identifying ice streams in hard bedrock areas, it is unlikely that any major ice streams have been missed. During the Last Glacial Maximum, Laurentide ice streams formed a drainage pattern that bears close resemblance to the present day velocity patterns in modern ice sheets. Large ice streams had extensive onset zones and were fed by multiple tributaries and, where ice drained through regions of high relief, the spacing of ice streams shows a degree of spatial self-organisation which has hitherto not been recognised. Topography exerted a primary control on the location of ice streams, but there were large areas along the western and southern margin of the ice sheet where the bed was composed of weaker sedimentary bedrock, and where networks of ice streams switched direction repeatedly and probably over short time scales. As the ice sheet retreated onto its low relief interior, several ice streams show no correspondence with topography or underlying geology, perhaps facilitated by localised build-up of pressurised subglacial meltwater. They differed from most other ice stream tracks in having much lower length-to-width ratios and have no modern analogues. There have been very few attempts to date the initiation and cessation of ice streams, but it is clear that ice streams switched on and off during deglaciation, rather than maintaining the same trajectory as the ice margin retreated. We provide a first order estimate of changes in ice stream activity during deglaciation and show that around 30% of the margin was drained by ice streams at the LGM (similar to that for present day Antarctic ice sheets), but this decreases to 15% and 12% at 12 cal ka BP and 10 cal ka BP, respectively. The extent to which these changes in the ice stream drainage network represent a simple and predictable readjustment to a changing mass balance driven by climate, or internal ice dynamical feedbacks unrelated to climate (or both) is largely unknown and represents a key area for future work to address.

The Celtic Sea and its piedmont glacier



From a NASA animation of Antarctic ice flow.  Note the streamlines and the wide ice streams (coloured blue) transporting glacier ice towards the ice shelves.  All of these streams exist within landscapes almost completely submerged beneath glacier ice.

===============

The Celtic Sea was affected by thick, dynamic and very extensive glacier ice during the Late Devensian.  But the ice was NOT contained within an ice stream.......


I’m returning to this one — the fascinating 2019 paper by James Scourse and many colleagues relating to the LGM advance of the Irish Sea Ice Stream (ISIS) between 27,000 and 24,000 years BP right out to the edge of the continental shelf and 150 km further our than previously estimated from marine floor sediments and bedforms.  The work is fastidious and the evidence presented by the authors looks solid enough — in line with former published work by Praeg and others.  So what this means is a substantial and rapid advance of ice across the Celtic Sea which was very early, and dramatically out of phase with events on other segments of the British and Irish Ice Sheet (BIIS).

One other point, to which I have not given much attention until now, is the conclusion that the advance (culminating around 25,000 yrs BP) took place at a time of falling global sea-level  but relatively stable relative sea-level on the shelf edge — and that retreat of the ice edge was triggered by "high relative sea-levels driven by significant glacio-isostatic depression, consistent with greater ice loads over Britain and Ireland than previously considered.”  That mean a very high crustal ice load in SW Britain — and that is not at all consistent with the idea that the ISIS was a narrow lobe pushing southwards from St George’s Channel towards the SW.  I have addressed that issue in many posts before……….


A much-reproduced eustatic sea-level curve covering the last two glacial episodes.  It's accepted that the lowest eustatic sea-level -- maybe below -130m -- occurred around 20,000 years ago.  This means that in the period around 27,000 - 25,000 yrs BP sea-level might have dropped by 3m. Could the crust in the Celtic Sea arena have been depressed isostatically by the weight of ice at an even greater rate, leading to a relative sea-level rise?

Then there is the name.  Was this really an ice stream in the normal sense of the word?  Scourse et al refer to it as having a width of c 100km, and they say: "A width of the order of 100 km places ISIS at the wider end of the phenomena (Margold et al., 2015) and comparable to the Hudson Strait Ice Stream of the Laurentide Ice Sheet and the Thwaites Ice Stream in Antarctica.”  But as I will never tire of saying, these and other ice streams flow, or flowed,  within landscapes completely inundated by glacier ice.  They are constrained laterally by flanking uplands, and their edges are seen to coincide with zones of shearing or intense crevassing on the contact between stagnant or slow-moving ice and the fast-moving ice within the ice stream.  The situation was nothing like that in the Celtic Sea — there are no topographic controls which might have prevented or constrained lateral spreading of the ice.  To the north of St George’s Channel, yes, that might have been the case, with an ice stream flanked by the Irish ice cap to the west and the Welsh ice cap to the east.  But to the south of St George’s Channel, no…….. in an “open landscape” with no deep troughs to direct the ice south-westwards, the ice MUST have spread laterally, and it MUST have spread well into the Bristol Channel and pressed against the coasts of Devon and Cornwall.  

It’s interesting that in the Ballum’s Bay article just published in QN, John Hiemstra and his colleagues now seem to accept that point.  And other authors are doing the same.  In the maps recently published by Glasser et al (2018) and Jenkins et al (2018) lobes are shown pressing well into Carmarthen Bay.  There is abundant empirical evidence in support of Devensian glacier ice affecting much of the south Pembrokeshire coast and also flowing across Caldey Island, as I have shown in many posts on this blog.. 

 
Glasser et al (2018).  An ice stream probably existed where the words are placed on the map, but the "outer" 400 km of the ice mass should be given a different label.  This was a vast Devensian piedmont glacier, covering 80,000 sq km.  Note that ice is shown pushing eastwards into the outer reaches of the Bristol Channel.

 
Jenkins et al (2018).  A similar Late Devensian ice edge is shown, but the ice flow arrows in the Celtic Sea are far too generalised.  Ice always flows perpendicular to the ice edge in unconstrained situations, so there must have been ice flow eastwards into the Bristol Channel. If the ice edge really did retreat from the shelf edge to the north Pembrokeshire coast (over a distance of 400 km) in 2,000 years, that represents a retreat rate of 200m per year at a time when glaciers were apparently expanding almost everywhere else.......


Glacier ice grounded right across the vast area of the Celtic Sea also provides a better explanation for the substantial ice load now required by Scourse et al in order to explain the isostatic depression and stratigraphic and bedform features at the edge of the continental shelf.  A rising relative sea level, at a time of a eustatic drop in global sea level, requires a lot of glacier ice, of considerable thickness!

So - thick ice in the Celtic Sea arena.  For 400 km from the constriction of St George's channel, there must have been a continuous gradient towards the south-west.  So what was the surface altitude of the ice in the middle of the Channel between Pembs and the SE coast of Ireland?   Let's assume, as I have done on many occasions, that the gradient was shallow -- consistent with a surging glacier on old sea-floor sediments, as modelled by many authors.  The ice must still have had a surface altitude of over 1500m in mid-channel c 27,000 years ago.  But why, in those circumstances, did the ice not overwhelm the whole of Pembrokeshire at the same time?  Maybe it did, and maybe we have just got our ice edge mapping all wrong?  I have been struggling with this issue for a long time, without having the skills or the tools for effective modelling.

My old map showing proposed ice masses and directions of ice movement at the time of the Anglian Glaciation.  Should we now be thinking of a similar situation during the Late Devensian?



My suggested ice contour map for the Anglian Glaciation.  How different might the ice contours have been
 in the Late Devensian?

This is all a bit of a glaciological puzzle, and I keep on coming back to this old map, which is so old that it is covered in cobwebs.  It looks crude, but I have sneaking feeling that all of the ice directions assumed by generations of geologists and geomorphologists are all wrong, and that this is what they were really like:

Does anybody have any evidence that this map is fundamentally wrong?  As far as I can see, it is the only one that fits the field evidence from a multitude of different sites around the edges of the Celtic Sea.


======================

Anyway, here is a suggestion.  Can we please abandon the ice of the term “Irish Sea Ice Stream” for the area to the south of St George’s Channel, and use the term “Celtic Sea Ice Lobe” or “Celtic Sea Piedmont Glacier” instead?  


Relevant info:

James Scourse et al.   2019.  Advance and retreat of the marine-terminating Irish Sea Ice Stream into the Celtic Sea during the Last Glacial: Timing and maximum extent.  Marine Geology,  Volume 412, June 2019, pp 53-68

========================

ABSTRACT 

The dynamics of the British-Irish Ice Sheet (BIIS) during the Last Glacial were conditioned by marine-based ice streams, the largest of which by far was the Irish Sea Ice Stream (ISIS) which drained southwest across the Celtic shelf. The maximum extent and timing of the ISIS have been constrained by onshore evidence from the UK and Ireland, and by glacigenic sediments encountered in a small suite of vibrocores from the UK-Irish continental shelf, from which a single radiocarbon date is available. These data have long supported ice advance to at least the mid-shelf, while recent results suggest the ISIS may have extended 150 km farther seaward to the shelf edge. The glacigenic sequences have not been placed within a secure seismic-stratigraphic context and the relationship between glaciation and the linear sediment megaridges observed on the outer shelf of the Celtic Sea has remained uncertain. Here we report results of sedimentological, geochemical, geochronological and micropalaeontological analyses combined with a seismic-stratigraphic investigation of the glacigenic sequences of the Celtic Sea with the aims of establishing maximum extent, depositional context, timing and retreat chronology of ISIS. Eight lithofacies packages are identified, six of which correlate with seismic facies. Lithofacies LF1 and LF2 correlate to a seafloor seismic facies (SF1) that we interpret to record the postglacial and Holocene transgressive flooding of the shelf. Lithofacies LF10 (till), LF3, LF4 and LF8 (glacimarine) correlate to different seismic facies that we interpret to be of glacigenic origin based on sedimentological, geotechnical and micropalaeontological evidence, and their distribution, supported by geochemical evidence from lithofacies LF8 and LF10 indicate extension of ISIS as far as the Celtic Sea shelf break. New radiocarbon ages on calcareous micro- and macrofauna constrain this advance to be between 24 and 27 cal ka BP, consistent with pre-existing geochronological constraints. Glacimarine lithofacies LF8 is in places glacitectonically contorted and deformed, indicating ice readvance, but the nature and timing of this readvance is unclear. Retreat out of the Celtic Sea was initially rapid and may have been triggered by high relative sea-levels driven by significant glacio-isostatic depression, consistent with greater ice loads over Britain and Ireland than previously considered.

Final section of text:

……………..While the existence of ISIS is well founded, its exact footprint remains ill-defined owing to few lateral geomorphological indicators such as a prominent edge to a field of mega-scale glacial lineations or shear margin moraines, and on the Celtic shelf there is a lack of obvious topography to constrain the margin. Nevertheless, a striking aspect is the large reconstructed width in comparison to other extant and palaeo ice streams from around the world. A width of the order of 100 km places ISIS at the wider end of the phenomena (Margold et al., 2015) and comparable to the Hudson Strait Ice Stream of the Laurentide Ice Sheet and the Thwaites Ice Stream in Antarctica. To maintain fast flow over such widths requires substantial feeder catchments that were probably unlikely from the BIIS. This suggests the ISIS could only exist as a transitory ice stream that rapidly drew down ice volumes. Our chronology of rapid advance and withdrawal is consistent with this, as are findings of numerical modelling investigations that struggle to simulate a steady state ice stream of this scale (Boulton and Hagdorn, 2006; Hubbard et al., 2009). It has also been a challenge for ice sheet models to simulate ice stream advance to the Isles of Scilly without building up ice elsewhere at locations more extensive than indicated by empirical evidence, such as mid and southern England (e.g. Patton et al., 2017). This problem is exacerbated by the Celtic Sea extent that we now report. Modelling investigations are underway to address this challenge. 

5. Conclusions 
Cored glacigenic sequences correlated to seismic stratigraphic units provide clear evidence of the advance and extent of the Irish Sea Ice Stream across the Celtic shelf during the Last Glacial. Overconsolidated subglacial diamicts (till) of ISIS origin have been recovered from close to the shelf break. Together with deformed and contorted proximal to distal glacimarine sequences containing distinctive cold water foraminiferal assemblages recovered from across the shelf, these diamicts indicate the advance of the ISIS into the Celtic Sea as far as the continental shelf break of the Irish and UK sectors of the Celtic Sea, and raises questions regarding the extent of ice into the French sector. The timing of this advance has been constrained by a series of new radiocarbon ages to between 27 and 24 cal ka BP. These ages are consistent with a single published radiocarbon determination from a glacimarine sequence recovered close to the shelf break, and with new geochronological data from the Isles of Scilly indicating ice advance at 25.5 ka. Comparison with ages for deglaciation farther north in the Irish Sea suggests that ice retreat across the Celtic shelf was initially rapid and then slowed, constrained by topographic controls, falling relative sea level and low tidal amplitudes in the vicinity of St George's Channel. Deglaciation on the outer shelf was probably initiated by high or rising sea level driven by glacio-isostatic depression during peak glaciation.

=======================

About ice streams (Bethan Davies):

Ice streams are corridors of fast flow within an ice sheet (ca. 800 metres per year). They discharge most of the ice and sediment from these ice sheets, flowing orders of magnitude faster than their surrounding ice. Their behaviour and stability is therefore essentially important to overall ice sheet dynamics and mass balance[1]. The Antarctic Ice Sheet currently discharges 90% of ice and sediment through ice streams. Antarctic Ice Streams are fed by complex tributaries that extend up to 1000 km into the interior of the ice sheet.

Ice streams can be constrained by topography or by areas of slow moving ice. They are called topographic ice streams or pure ice streams respectively. Both types show variations in behaviour (both through time and space), which indicates potential for instability and are therefore particularly interesting.


http://www.antarcticglaciers.org/glacier-processes/types-of-glacier-2/ice-streams/


According to this definition, th 80,000 sq kn of ice that filled the Celtic Sea arena should NOT be referred to as an ice stream,

Thursday, 4 July 2019

The Flimston erratics — dumped by Devensian ice?


Not so long ago, I believed quite firmly that the erratic memorial stones in Flimston Churchyard (on the Castlemartin Peninsula, Pembs) had been introduced into the area during the Anglian Glaciation — since Devensian ice was assumed not to have affected the area.  Now I’m not so sure, following the discovery of apparently fresh till at numerous localities along the South Pembrokeshire coast.  My working assumption is that the Devensian ice came in from the west, pushing into Carmarthen Bay and probably covering Caldey Island.  At times it might have flowed ENE — indeed, this direction of movement is what seems to be indicated by the reddish (ORS) appearance of the Ballum’s Bay till, since the Devonian reddish sandstones are exposed on the southern part of the island, giving way to Carboniferous Limestone in the north.

My working assumption is that the rampart of cliffs was an efficient barrier to ice movement;  in places the ice overtopped the cliffs, and in places it did not.  South-facing cliffs were affected by ice, and east-facing cliffs may have been left ice-free.  The distribution of clifftop till seems to support this idea.  But.......

Might the Devensian ice have transgressed further inland?  There are abundant records of till and other deposits across the plateau landscape of the Castlemartin Peninsula.  I have always assumed that these are very old.  But if they are uncemented, I now think that they might be of Devensian age.

Back to the boulders.  From Adrian James’s description (below) we can see that the boulders were collected up for use as gravestones or memorial stones from locations up to 3.4 km from the chapel itself, in 1903.  But how heavily weathered are their surfaces?  Here we have a wonderful opportunity for cosmogenic dating.  Let’s assume that since emplacement these boulders have been exposed on the ground surface and not buried in other deposits or covered with vegetation — if they have been lying around since the Anglian glaciation there could be surface exposure ages of up to 450,000 years, but if they are Later Devensian erratics, abraded and modified during ice transport, there could be surface ages as young as 25,000 years BP.

Cosmogenic dating needed........


This map shows the putative Celtic Sea lobe of the Devensian Irish Sea Glacier or Ice Stream pushing eastwards into the Bristol Channel, flowing across Caldey and Lundy Islands and maybe almost reaching the coast of Gower.  Ice is shown just spilling over the cliffs of the South Pembrokeshire coast -- bud did it push much further inland?


==========================

Flimston Chapel churchyard (SR92399558). There is a substantial collection of erratics in this churchyard. Some have been used as headstones for the graves of members of the Lambton Family who died in military service. Others have been left sitting in one corner of the enclosure. All of these stones arrived in the churchyard when the chapel was renovated and re-consecrated in 1903. There are 7 of them. A pamphlet, which describes the features and memorials in the yard, printed at the time of the opening of the chapel in about 1914, gives us these vague details:

No. 1 Boulder, at the head of Lady Victoria Lambton's grave was taken from just opposite Flimston Cottage. A 'brecciated spherulite, albite, trachyte or rhyolite.' Many occur in Pembrokeshire. This one 'seems to fit best with those of Romans' Castle in the character of its spherulites and groundmass.'
[Flimston Cottage stood at SR927955, about 0.3 km ESE of the chapel and just north of the old clay pits.]
No. 2 Boulder, from Pwllslaughter, which stands in the opposite North corner. [Bullslaughter, SR942944 - approximately 2.25 km SE]
No. 3 Boulder from Bulliber Farm [About 2.25 km WNW, at SR905968]
No. 4 Boulder from Merrion pond. [ About 2 km NE].
No. 5 Boulder from Lyserry Farm
No. 6 Boulder from Lyserry Farm.
No.7 Boulder from Lyserry Farm.
[Lyserry is about 3.4 km ENE of Flimston chapel, at SR9556967]













Tuesday, 2 July 2019

Lydstep Point raised beach platform

The raised beach platform near Whitesheet Rock, on the flank of Lydstep Point, cut across steeply dipping strata of Carboniferous Limestone.  The platform site is open to wave attack from the SW.

This is one of the most impressive raised beach platforms in west Wales, tucked away behind Whitesheet Rock, near Lydstep Point.  Grid ref SS091975.  The remnant is over 100m long, and up to 30m wide — that’s much wider than any other old platform seen in this region.  The platform has a steeper gradient than many others, and it is severely broken up by gullies and solutional features -- the effects of current wave action are apparent at the outer edge of the platform.  In places it is actually quite dangerous to walk across the surface.  I have seen no raised beach cobbles here -- the only sediments are  solidly cemented slope deposits or scree, made entirely of limestone fragments.  At the back of the platform there are a number of old caves related to conduits within the limestone.  They would be worth investigating.......

Another view from platform level.  The platform is accessible -- with care -- from the slope above.

The distinct notch at the back of the platform.  Note that the platform has quite a steep gradient, and that its surface is very broken up -- an indicator of great age?

View to the NW, from near the southern edge of the platform.  At bottom left, we can see the current cliffs which are gradually eating into the platform.

Fine cemented limestone breccia on the platform surface

Coarse limestone breccia including large angular blocks resting on the highly 
dissected platform surface




Monday, 1 July 2019

Caldey Island — the Ballum's Bay till must be Late Devensian


Google Earth image of Ballums Bay, Caldey Island.  The till exposure is at the head of the gulley, top left.  The edge of the raised beach platform with cemented sediments coincides approximately with the black line.

 
 Ballums Bay from the east (from near Small Ord Point).  The beach, backed by the gully containing till, is right of centre. To left of centre we see remnants of raised beach platforms with cemented beach materials, breccia and sandrock, overlain by a terrace of more recent materials.

Following my note about the interesting QN article by John Hiemstra and others, I have been digging into my records of Caldey Island, and have found a number of photos that might be of interest.  I have several pics of the till exposure which has been investigated and now described in the QN piece, but we'll leave those to one side for the moment.  Of more interest to the debate about age are the photos of the cemented materials found on the old wave-cut platforms immediately to the south.

The platform is seriously broken up, cut by gullies and other inlets affected by ongoing wave action, and with steps and assorted vertical and overhanging sections.  Like the other wave-cut platforms on the limestone coasts of South Pembrokeshire, it appears to be a composite feature, representing erosion at a number of different levels between present HWM and +5m.  The raised beach platform is a mess -- appearing very old, with segments of many different ages.  Ipswichian?  My guess is that it is much older, and that it has been modified across several interglacials.  

                            
Raised beach platform remnants on steeply dipping Carboniferous Limestone strata on 
the south side of Ballums Bay

Cemented brecciated limestone debris incorporating raised beach boulders and cobbles on one of the highest rock platform remnants, Ballums Bay south.

Comparison with other platform remnants is instructive.  See these posts on Broad Haven South and Lydstep:



Let's take a look at the cemented deposits.  There can be no doubt that these are all older than the Ballums Bay till.  The raised beach, limestone breccia and bedded sandrock are intimately associated, although they do not all appear in all exposures.  For example, in the extensive high raised beach platform near Lydstep Point cemented breccia and cemented sandrock are both found, but I have been unable to find any traces of cemented raised beach cobbles.

Key Quaternary locations on Lydstep Headland (note that there is a mistake on this map.  The raised beach platform is in the bay to the west, behind Whitesheet Rock.  To be corrected.....)

 
Complex cemented deposits on the limestone raised beach platform on the south side of Ballums Bay.   Here we see abundant raised beach cobbles, layers of sandrock, and masses of limestone rockfall debris and slope breccia. 

Bedded sandrock resting on slope breccia and raised beach cobbles., south side of Ballums Bay.   All cemented with carbonate cement -- with some traces of manganese oxide cement.

The South Pembrokeshire Quaternary regional stratigraphy (based on my own observations and those of Dixon and Leach) is as follows:

8. Sandy loam and blown sand
7. Upper head (uncemented)
6. Fluvioglacial sands and gravels -- traces
5. Till from Dewisland (Devensian) glaciation -- many coastal exposures
4c. Lower head (cemented in some localities)
4b. Cemented sands (sandrock)
4a. Head incorporating raised beach cobbles (cemented)
3. Cemented raised beach
2. Older glacial deposits -- mostly destroyed, but exposed at Lydstep (Black Mixen)
1. Raised beach platform (complex modifications over several interglacials?)

If, as suggested by John Hiemstra and his colleagues, the unconsolidated till at Ballums Bay is of Anglian age (but periglacially redistributed or redeposited), it must be older than the cemented raised beach deposits.  So why is it not cemented like deposits 2, 3 and 4 in the regional sedimentary sequence?  It does not make sense.  The authors seem to be suggesting that the original till is the same age as the ancient cemented till at Black Mixen -- that does not make sense either.  The fresh till at Ballums Bay lies in a limestone gully, just like the fresh till at Lydstep, so the two deposits must be related.


In addition, the Ballums Bay till looks like the fresh till exposed in many clifftop locations on the south Pembrokeshire coast -- and it lies in the same stratigraphic position, overlain only by unconsolidated blown sand or sandloess, as in the Isles of Scilly.  It must also be the same age as the till exposed near the Caldey landing stage, which is reddish in colour, sandy and gravelly in texture, matrix supported, and contains a similar mix of erratic cobbles.

Till exposure near the Caldey landing stage.  At the base, broken Carboniferous Limestone bedrock.  Above that, 1.3 m gravelly and sandy fresh unconsolidated till. Above 
that, c 1m of sandy loess and soil.

Brecciated limestone slope deposit or "head" above broken Carboniferous Limestone bedrock, near the Caldey landing stage.  This is uncemented, and appears to underlie the Devensian till.  It is probably of Early Devensian age, and correlated with many other slope deposits in West Wales which underlie till and fluvioglacial materials.


Here is the crucial discussion on the age of the till, from the QN article by John Hiemstra and his colleagues:

1) In situ Devensian till

This was the scenario we set out to test. Several features certainly favour this origin: (i) ‘foreign’ igneous erratics; (ii) dominance of sandstone clasts mostly probably from outcrops on the west of the island lying slightly south of Bullum’ Bay, which would tally with an ENE flow direction of ice as envisaged by Brian John; (iii) clast form characteristics; and (iv) probable loessic sediment overlying the diamicton without obvious hiatus, consistent with a Devensian origin. There are, however, several drawbacks to this scenario: (i) the very low content of any material that does not have a likely relatively local provenance: (ii) no observed far-travelled erratics or glacigenic diamicton in parts of the island we could access, and also very few such erratics on the beaches; (iii) flow structures atypical of till; and (4) no convincing striations. (The grain fabric evidence is equivocal, neither supporting nor ruling out a till origin.)

(2) Redistribution of pre-existing sediment including any residual Anglian glacigenic sediment during Devensian periglacial conditions

An in situ Anglian till origin is not feasible because raised Ipswichian sea level - probably at least c. +5 m OD (Dutton and Lambeck, 2012) - would have removed any existing sediment from the lower part of the gully where the diamicton lies. An origin by redistribution of regolith and soil as well as any Anglian glacial material by mass flow under Devensian periglacial conditions is, however, plausible. The igneous pebbles could have been derived from two possible transport directions and by two possible sequences of events. (In either case, mass flow would have moved sediment downslope from higher ground in the south of the island to the gully.) One alternative is that they could have been deposited on the island during the Anglian glaciation when many argue that ice from the Irish Sea Basin moved eastwards and southwards across this region. Mass flow processes would then have carried these clasts into the gully. The other alternative is that there is a possible source to the south of Bullum’s Bay of the igneous pebbles in conglomerates of the West Angle Formation of the upper ORS, which is said to be ‘rich’ in such clasts as well as those of some other lithologies (Howells, 2007). In this case, sediment containing clasts derived from mainland sources would have been transported to the island by glacial action, and during the Devensian any remnant glacigenic material would have been carried north(east)wards downslope to Bullum’s Bay by mass flow processes together with any locally eroded material including the igneous erratics. The flow structures, lack of striations, clay-rich texture and grain fabric evidence tally with an origin by periglacial slope processes. Clast rounding could be the result of one or a combination of long-term weathering, residual glacial modification or limited modification acquired during mass flow transport. The clast form characteristics of the igneous clasts would favour a glacial rather than fluvial (i.e. ORS conglomerate) origin, although reconstructing transport history from just four clasts must be treated with caution. Lack of angular clasts from the underlying limestone either in the diamicton or forming the main constituent of a discrete single-lithology periglacial diamicton might appear problematic given the frost susceptibility of this rock type. However, the lack of steep surrounding slopes with exposed bedrock that could act as the source of such material is the probable explanation. (Transport to Bullum’s Bay of the igneous erratics by northward-moving longshore drift during raised Ipswichian sea level is conceivable but their incorporation into the exposed diamicton seems unlikely given the lack of contained marine shells.)

On balance, therefore, we prefer the second scenario to explain the Bullum’s Bay diamicton as it provides a better explanation of the evidence.

In my view, as indicated earlier, the discussion by the authors is not at all convincing, and includes a good deal of special pleading.  The till is not unusual or unique in any way, and like most of the related deposits in South Pembrokeshire, if it looks like a till it probably is a till.  One gets the impression that the authors are rather desperate to demonstrate that the deposit is not an in situ till, and their suggested "drawbacks" are perhaps based on the fact they are not familiar with related deposits, their lithologies and their stratigraphic relationships.  The low content of foreign materials is not at all unusual in Pembrokeshire tills, as I demonstrated in my 1965 thesis. There ARE far-travelled erratics and other tills on the island, as I have shown above.  There are erratics on the beaches.  There are scratches on cobbles which I have interpreted as striations.  And they have not demonstrated that the flow structures seen are "atypical of till" -- this is not a lodgement till or a true flow till, but a till laid down in a wasting ice environment, which was mobile during deposition and then subject to a degree of remobilisation or rearrangement following ice wastage. In that respect it is typical of most of the till exposures of West Wales.

The "preferred explanation" of the till -- namely that it is "a discrete single-lithology periglacial diamicton"  is so convoluted that it is slightly embarrassing!  Is this how the authors would explain the other clifftop diamictons on the south Pembrokeshire coast, or the similar diamictons on the north coasts of the Isles of Scilly?  In my view, if there had been Anglian or other ancient tills littering the ground surface of the Caldey limestone plateau, they would have been "locked in" by interglacial carbonate cementation processes and would not have been available for periglacial redistribution.

Unfortunately, the authors appear to have been so concerned about the implications of fresh Devensian till in this part of the Bristol Channel that they have refused to believe the evidence of their own eyes!  Occam's Razor, chaps.  This looks like a fresh till and it is a fresh till -- and there was Devensian Irish Sea ice in this part of the Bristol Channel around 20,000 years ago.




Finally, this is where some work needs to be done -- in Drinkim Bay, south of Ballums Bay.  I was not able to look at it last time because of tidal and time constraints, but it looks as if there are exposed sediments and platform traces there........