Mark Merrony, Antiqvvs, Summer 2022, pp 25-34
How much do we know about Stonehenge? Less than we think. And what has Stonehenge got to do with the Ice Age? More than we might think. This blog is mostly devoted to the problems of where the Stonehenge bluestones came from, and how they got from their source areas to the monument. Now and then I will muse on related Stonehenge topics which have an Ice Age dimension...
Some of the ideas discussed in this blog are published in my new book called "The Stonehenge Bluestones" -- available by post and through good bookshops everywhere. Bad bookshops might not have it....
To order, click HERE
Monday, 27 June 2022
The Preseli Roman Road -- a hypothesis in search of some evidence
Mark Merrony, Antiqvvs, Summer 2022, pp 25-34
Glacial Erratics and Flights of Fancy
I have been quite entertained by the attempt, by fellow blogger Tim Daw, to deny the significance of the "Newall Boulder" on the grounds that we do not know EXACTLY where it came from. It was found by Hawley and his fellow diggers in their 1924 dig in a "secondary" position, having been worked and then thrown away by one of our mysterious ancestors. Kellaway thought it was of great importance as a "proof of glaciation" at Stonehenge, but Tim is having none of it. "If it has been moved by humans, and there are no records where from, then it adds nothing to the argument." says Tim, rather grandly. " If you don't know where the glacier left it, it don't mean a thing."
Well, I have been studying glacial erratics for most of my life, and I think I can claim to know a thing or two about them. Let me assure Tim that the Newall Boulder does add a great deal to the argument, and confirms what some of us have been saying for years about the likelihood of glacial action in the Stonehenge landscape. For a start, it's not unique -- there are glacial erratics all over the place, particularly in the bluestone circle. And in heavily populated countries like the UK glacial erratics are very seldom found in EXACTLY the places where they were dumped by ice. If you find an erratic boulder in till it is probably still in the place where it was dumped by the ice, but most of the "free erratics" have been moved from fields into field boundaries or into stone clearance cairns, or gathered up for use in stone walls or built into dwellings and farm buildings. Dare I say it, many thousands of them have been incorporated into Neolithic megalithic monuments, as pointed out by Stephen Briggs, Geoffrey Kellaway and then Olwen Williams-Thorpe and her co-workers many years ago. The fact that these erratics have been collected and moved about does nothing to diminish their significance. They help to present a coherent picture of where the ice came from, what the directions of movement were, and where the ice edge melted away. A great part of the map of ice movements across the British Isles is based upon the evidence provided by erratics that are no longer EXACTLY where they were found.......
So the story of that lump of rock being shifted about the place in the Netherlands is a jolly little tale, of no significance whatsoever to the argument about Newall's Boulder.
I'll quote Kellaway again: "When found, the weathered boulder had been thrown away with chippings and other waste material. An attempt had been made to dress one end of the boulder but this, in Mr Newall’s opinion, had failed because of the sheared condition of the rock. It would appear that this small boulder, already deeply weathered, would never have been of any practical value. To suggest it had been carried from North Wales lo Wiltshire only to be tested and thrown away as worthless would imply an astounding lack of common sense and understanding of the properties of rocks on the part of the men who built Stonehenge. If, however, the bluestones were recovered locally from material scattered on the surface of the Chalk or were present in solution cavities, then the presence of inferior material is comprehensible. Having gathered up all the available bluestones, both from natural sources and from abandoned Neolithic structures, the Bronze Age builders of Stonehenge used the large ones for constructional purposes and tested the smaller boulders for the manufacture of implements. Those which were unsuitable were thrown away."One further point. It's a bit rich for people like Tim to argue that they must have absolute proof of the EXACT place where the Newall Boulder was emplaced, while accepting the fantasies about bluestone quarries at Rhosyfelin and Carn Goedog and a "lost stone circle" at Waun Mawn. There is no hard proof from any of those sites of any Stonehenge-related Neolithic activity, just as there is no hard proof that any of the Stonehenge bluestones have been provenanced to "within a few square metres." (The approximate provenancing -- to within a few sq km -- is good and should be applauded. But EXACT provenancing? Sorry, but that's just in the minds of the deluded.)
What's good for the goose should be good for the gander.
Thursday, 23 June 2022
SH62 -- Much ado about nothing very much
Stone 62 at Stonehenge -- a nice little shaped pillar made of unspotted dolerite. Courtesy the Stones of Stonehenge web site.
I have been sent a link to a new paper on the provenancing of Stone 62, one of the unpotted dolerites at Stonehenge.
Details:
Portable XRF investigation of Stonehenge -- Stone 62 and potential source dolerite outcrops in the Mynydd Preseli, west Wales. by Nick J.G. Pearce, Richard E. Bevins, and Rob A. Ixer. Journal of Archaeological Science: Reports 44 (2022) 103525.
It's a highly technical paper, involving a huge amount of time and expense in pursuit of a wild fantasy by Parker Pearson -- namely that one of the pits at Waun Mawn has the same cross-section as stone 62 at Stonehenge. So the geologists have been roped in to help establish that as something accurate and reliable! It's extraordinary, the lengths that people will go to in order to cofirm their biases. I have seen the pit at Waun Mawn, and so have many others, and I have not found anybody who "sees the imprint" as Parker Pearson does.
So the intention is to SHOW that Stone 62 was, once upon a time, in that rather shallow and nondescript hollow in the ground. First, there is a need to show where SH62 came from. It's a nice little shaped pillar which looks as if it might have come from eastern Preseli, where there is columnar jointing in the unspotted and spotted dolerite -- but it has clearly been shaped and dressed rather carefully at Stonehenge.
The paper cites earler attempts at provenancing and sampling, and reports the results of recent pXRF work in Preseli and at Stonehenge. That work is quite interesting, and I was very interested to read of the multiple sampling work done on rock surfaces on the east Preseli tors and the attempts to unravel the bias that might be introduced to the work when comparing results from weathered and unweathered surfaces.
Anyway, the work points quite convincingly not to Cerrigmarchogion -- as previously speculated -- but to the small crag called Carn Ddu-bach, not far from Carn Ddafad-las at the eastern end of the ridge. This is not far from the prominent peak of Foel Drygarn. Interesting -- so we have yet another bluestone source and yet another setback for those who stick quite irrationally to the belief that the bluestones were sacred and special, and that they came from Neolithic quarries. The new source crag is around 6 km from Waun Mawn.
The rational thing at this point would be for the geologists to say "Multiple dolerite sources = glacial entrainment and transport." One might also wonder why our heroic ancestors might like to cart lumps of unspotted dolerite from Carn Ddu-bach all the way to Waun Mawn when there are perfectly fine outcrops of the same rock type within a couple of hundred metres......
But not a bit of it. Nick Pearce and his colleagues are made of sterner stuff, and they are sticking to the Waun Mawn fantasy as if their lives depend on it, while pretending to keep a distance. It's all more than a little obsessive, and rather sad.
Quote:
" Now that a source for Stone 62 has been established at approximately 6 km ESE of Waun Mawn (most probably at Garn Ddu Fach but possibly neighbouring Carn Ddafad-las), it is important to determine if any of the extant stones at Waun Mawn might have the same source. If confirmed, these outcomes may support the proposal of Parker Pearson et al. (2021), who suggested that Stonehenge Stone 62 once stood in stonehole 91 at Waun Mawn. Analysis of the extant stones at Waun Mawn is currently underway."
"IT IS IMPORTANT TO DETERMINE....." ??? Come off it, guys -- it is not in the least important, since the Waun Mawn fantasy has no archaeological or other value whatsoever, apart from the maintenance of MPP's rather ragged reputation.
This all brings to mind the Black Knight in "Monty Python and the Holy Grail" -- 'Tis but a scratch!!".......
Wednesday, 22 June 2022
Dacites and the fictional orthostat
Ixer and Bevins keep on publishing at a furious rate in conjunction with assorted colleagues-- I am not sure what the beloved WANHM magazine would do without them! The latest article is entitled "Stonehenge Dacite Group D -- fact or fiction?". WANHM Vol 115, pp xx - xx. Strange title, since if the group is a fiction it is fiction of their own inventing. It's like putting up an Aunt Sally in order to have the satisfaction of knocking it down.......
Anyway, the article is available via Academia for those who want to check it out.
We are all (and that includes the authors of this latest piece) confused by the sheer abundance of fragments (the authors never differentiate between "fragments" and pebbles or stones) of widely differing lithologies scattered across the Stonehenge landscape. Most geologists, in their shoes, would have long since abandoned the very idea of bluestone quarries, since both monoliths and fragments are so hugely variable in their characteristics that they must have come from multiple locations in West Wales and further afield. But they insist on seeking to gather their samples into groups in an attempt to minimise the number of "provenences" because that is the only way they can maintain the human transport hypothesis; it makes no sense at all for Neolithic tribesment to have wandered all over West West collecting up stones from here, there and everywhere just to cart them off to Stonehenge and then throw them away or break them up.
Anyway, here we go again, with 8 rather inconvenient fragments analysed and found not to match up with anything in particular. They do seem to match with one another. The authors do not know where they came from, and assume (without any foundation) that they must have come from a missing orthostat, and that they have most probably come from North Pembrokeshire. They also consider that the fragmants are "true bluestones", whatever that may mean.
For the sake of completeness, here is the latest classification:
Hmmm -- just as we were getting used to Volcanic Group B, it's disappeared into thin air, to be replaced by Dacite Group B. Whatever next?
In their conclusion the authors do consider the possibility that the unassigned dacite fragments might have been introduced to the area as glacial erratics, but they dismiss that option on the grounds that no other "unequivocal" glacial erratic has ever been found in the Stonehenge landscape. One might ask: "What about all those bluestone boulders that make up the bluestone circle?" And one might also ask: "What about Newall's ignimbrite boulder?" Of which more anon.
And who gets to decide what is equivocal and what is unequivocal? Are the famous bluestone quarries "unequivocal"? Is MPP's "lost circle" unequivocal"? Ixer and his friends may think so, but there are very many of us who beg to differ.
Kellaway text on the Newall Boulder
Because the text on the scanned version of this 1991 report is not easy to read, I have done an OCR scan and here it is again.
RSN 18 ignimbritic tuff-lava
Description by RK Harrison: “This large, dark blue-grey, hard, flinty (? partly worked artifact) shows a white weathered crust up to 5 mm thick. The thin section shows a complex structure of very finely banded welded tuff (compressed foliated shards cemented by fine silica) with composite quartz grains and strings of dusty leucoxene, separated by patches of much finer grained, finely fluxioned glassy lava with patches of granular quartz, This specimen appears to represent a complex of originally viscous glassy lava and welded vitric tuff, all presumably of rhyolitic composition.”
The dimensions and general appearance of the rock are shown in Plates 35 & 36.
Comparison of this ignimbritic rock with other Welsh Ordovician volcanic rocks suggests that it is more closely related to the known ignimbrites of North Wales than to those of the Mynydd Preseli area of Dyfed. On the other hand none of the ignimbrites available for comparison provided a sufficiently good match to enable a link to be made with one specific locality. At the time. this conclusion appeared to be disaappointingly vague and out of line with some of the more dogmatic slatements made in respect of Stonehenge rocks. In the light of more recent work, however, Mr Harrison's cautious approach has been fully justified.
If the ignimbritic tuff-lava is indeed an erratic of North Wales origin and the ice which conveyed it is as old as it appears, then careful consideration must be given to the value of implying direct derivation from individual exposures or outcrops which exist at the present day. In the 247 Ma which may have elapsed since this Pliocene glaciation occurred, the mountainous parts of Wales (both north and south) have undergone substantial changes of relief. While, therefore, it may be justifiable to compare the Stonehenge rocks with suites of Welsh Palaeozoic igneous and metamorphic rocks on a regional basis, it may not be possible to give precise locations without having more information about the Pliocene relief and surface geology of Wales than is currently available. (Note: Kellaway was fascinated by the idea of a very large Pliocene Glaciation which occured when the landscape looked very different to that of today. Most of his ideas are well supported by modern research, but not this one!)
The weathered zone seen on the surface of the ignimbritic boulder is similar to other weathered exteriors of specimens examined by Mr R. Sanderson (Appendix Ill). This type of weathering is to be seen at the present day in peaty or humic environments and could have occurred before the rock was moved in ice from Wales to Salisbury Plain. Reporting on some of the ophitic dolerites from Stonehenge, Mr Harrison commented that "In order to ascertain the differences between the altered outer crust of pale dolerite and the fresher, blue-grey interior, X-ray diffraction photographs were taken of powders drilled from the respective zones in ENQ 2301, the outer crust here being about 5 mm thick. Mr B.R. Young reports that both samples contain chlorite, quartz, feldspar, pyroxene and amphibole. The crust contains more quartz and less feldspar than the interior. Kaolinite was not detected. Superficial leaching by acid water has broken down the feldspar, leaving residual silica."
If the weathering does date from before the translation of the rock to Wiltshire then the stone must have been conveyed either by hand or in ice. If the bleaching and weathering took place after arrival at Salisbury Piain then the boulder might have been carried by fluviatile or fuvioglacial transportation, though the weakness of the rock (due to shearing) argues strongly against fluviatile transport from Wales, or rounding in any medium other than ice.
When found, the weathered boulder had been thrown away with chippings and other waste material. An attempt had been made to dress one end of the boulder but this, in Mr Newall’s opinion, had failed because of the sheared condition of the rock. It would appear that this small boulder, already deeply weathered, would never have been of any practical value. To suggest it had been carried from North Wales lo Wiltshire only to be tested and thrown away as worthless would imply an astounding lack of common sense and understanding of the properties of rocks on the part of the men who built Stonehenge. If, however, the bluestones were recovered locally from material scattered on the surface of the Chalk or were present in solution cavities, then the presence of inferior material is comprehensible. Having gathered up all the available bluestones, both from natural sources and from abandoned Neolithic structures, the Bronze Age builders of Stonehenge used the large ones for constructional purposes and tested the smaller boulders for the manufacture of implements. Those which were unsuitable were thrown away.
It is worth noting that Sir A. C. Ramsay (1863) observed that the foreign stones of Stonehenge include rocks which are petrologically similar to those of North Pembrokeshire and that others resemble rocks from Caernarvonshire and the Lilandeilo Flag district of Montgomeryshire west of the Stiper Stones. This appears to be the first published suggestion that the bluestones may include rocks similar to these found both in southwest and North Wales.
----------------------------
From: 1991: "The older Plio-Pleistocene glaciations of the region around Bath." In Kellaway, GA (ed) Hot Springs of Bath, pp 243-41.
Tuesday, 21 June 2022
Stockholm Archipelago glacial clasts
My art installation consisting of 11 clasts of diminishing size. These were picked up at random from washed till on the foreshore of Blido. They are all made of PreCambrian basement rock -- granite, gneiss, basalt, volcanic ash etc. Only two or three of these rocks are bullet shaped.
You can pluck glacial erratic clasts out of till exposures and washed till all over the place in the islands of the Stockholm Archipelago -- they are generally clean and easy to find becuase the finer materials have been removed by "washing" as the land has risen from the sea during the process of isostatic recovery. A. couple of things are noteworthy:
1. The clasts do NOT carry traces of ancient weathered crusts or surfaces; all the facets and edges are equally unweathered, although some parts of the clasts have been stained or modified / abraded / fractured more recently than others.
2. Rough blocks and slabs predominate, with multiple facets. Maybe about ten percent of clasts have a bullet shape.
Some clasts have nine or ten facets -- some abraded and others clearly originating as fracture scars. Some scars are old and some are young; some of the older ones are modified by later abrasion and by smaller and later fractures. Almost all combinastions are possible.
Striations on the same clast -- a deep one sub-parallel to the long axis but others running across it -- showing that at some stage the long axis has been at 90 degrees to the direction of ice flow and clast transport.
Monday, 20 June 2022
The mysterious boulder 38
In checking out what the score is with regard to dark blue flinty welded tuffs and so forth, I wondered whether this boulder might be related to the Newall boulder. There is a chance, but much more geology needs to be done by the experts. I checked back to a previous post about SH38 and the assorted volcanics at Stonehenge and in the surroundingt landscape:
https://brian-mountainman.blogspot.com/2015/04/new-paper-on-bluestone-38.html
Hard ‘Volcanics with sub-planar texture’ in the Stonehenge Landscape by Rob A. Ixer, Richard E. Bevins and Andy P. Giże
Wilts Arch & Nat Hist Mag 108 (2015), pp 1-14
On giving the paper a fresh read, I am impressed by how strongly biased it is towards the ruling human transport hypothesis, with -- over and again -- a "forcing" of analysis and interpretation into the following assumptions: (a) that the bulk of bluestone fragments in the debitage MUST have come from North Pembrokehire; and (b) that bluestone fragments can only exist at Stonehenge if they have been knocked off past or present monoliths transported by our heroic ancestors. So the paper is deeply unsatisfactory since it completely fails to address the possibilities that the bluestone monoliths might have been glacially transported, and that large numbers of fragments in the debitage might have nothing whatsoever to do with the known monoliths. Furthermore, many of the small boulders, pebbles and broken fragments might have nothing whatsoever to do with Pembrokeshire. They could be glacial erratics from closer to home, or maybe from further afield.
Putting all that to one side, it's tempting to suggest that there might be a link between the Newall boulder and SH38, and that the "welded vitric acid tuff" might be related to other rock samples looked at by Ixer and his colleagues and identified as Volcanic Group B. Ixer and his colleagues referred to "small, often sub-rounded, rather than angular flaked, fragments throughout Stonehenge and its environs."
Quote:
"...........
Volcanic Group B, hard rocks that are partially characterised by an unusual mineralogy including two forms of graphitising carbon. Only twelve Volcanic Group B samples have been recognised from the Stonehenge debitage."
Quote:
"Conclusions
Orthostat SH38 and twelve pieces of debitage that constitute the new Volcanic Group B class of debitage are sufficiently uniform in terms of their mineralogy, grain size and textures that it seems probable that they are all from the same rock rather than just from the same outcrop.
Although this debitage is numerically rare it has a wide spatial distribution in the Stonehenge Landscape notably within the Darvill and Wainwright April 2008 excavation and Heelstone Ditch but also including within Trench 45 in The Avenue and Aubrey Hole 7 in Stonehenge. Although a lithic with graphitising carbon was found from close to the Stonehenge Greater Cursus no SH38 debitage has been recognised from there with any certainty. The SH38 debitage distribution is similar to that found for orthostat SH48 but is more extensive than that for the Altar Stone.
The temporal distribution of the SH38 debitage is very similar to that for SH48 in that most pieces are found from post Neolithic contexts but are less ‘bunched’ than that from the Altar Stone.
The newly reported SH38 debitage has extended the range of petrographical features beyond those seen in orthostat SH38, notably to include the presence of large zircons, rare earth-bearing minerals, tube pumice and a significant fine-grained siliceous component. This in turn suggests that were the single geochemical analysis for SH38 (Thorpe et al. 1991) and taken from a very small sample , to be augmented by new analyses from the present samples, a geochemistry that was closer to the bulk geochemistry for SH38 could be achieved. An enhanced petrography plus a more representative geochemistry would help to narrow the possible geographical sources for the orthostat. On present knowledge this is still expected to be found within the Ordovician Volcanic sequences, in the north Pembrokeshire area but the net is tightening."
Sunday, 19 June 2022
Sample OU2 was not from Newall’s Boulder
But I was wrong.
I have done some more detective work. In 1989 the OU team (which included Rob Ixer) examined as many bluestone fragments as they could find, including one that they referred to as RSN18 - ENQ2305. They admitted that they did not know where it had come from, and there was no mention in their text of Newall’s boulder. They renamed it OU2 and the analysis showed it to be a typical blue-grey rhyolite from the north slopes of Mynydd Preseli. However, they listed the sampled rock fragment as having dimensions 10 cm x 7 cm x 3.4 cm and a weight of 244 gm. The Newall boulder with which we are concerned does not have those dimensions and it is certainly not a blue-grey rhyolite. It is, according to Harrison, a dark blue / blackish flinty welded tuff. The boulder dimensions are c 22 cm x 15 cm x 10m cm, and I guess its weight as being around 10 kg. The OU team did not examine the smaller cut IGS boulder sample either, since that has dimensions c 8 cm x 4 cm x 6 cm — ie considerably smaller than OU2. We know that the IGS staff examined at least five samples / thin sections from the Newall collection, since there is a reference in correspondence to a sample numbered ENQ2301. We also know that the record keeping was somewhat chaotic, and in one letter to Kellaway, Newall referred to his notes and labels being eaten by mice while the samples were stored in his attic……..
I think that the sample examined by the OU team came from one of the other smaller samples (of a quite different rock type) that has now found its way into the Salisbury Museum collection.
So we can reject that 1991 reference as unreliable, and concentrate on the examinations of the boulder by RK Harrison, Geoffrey Kellaway, R Sanderson and BR Young. They all handled the boulder, took samples from it, knew its provenance in the Hawley Stonehenge dig, and discussed among themselves and with Newall where it might have come from. I have on the file some very interesting correspondence. So the Stonehenge provenance is, as they say, rock solid…….. and far more reliable than the provenances of many of the other fragments collected from Stonehenge digs. That is all that matters.
PS. I have noticed that the text painted onto the rock says RSN18. But the bit that says ENQ2301 is on a sticky label. Shall we guess that when Newall handed over his samples to Salisbury Museum in 1976, with many of the labels missing because the mouse in the attic had eaten them, new labels had to be written out and appended to assorted lumps of rock? And shall we guess that somebody inadvertently put the wrong label onto the Newall Boulder?
Friday, 10 June 2022
Sub-glacial clast modification
September 2006
Earth-Science Reviews 78(1)
Antarctic Science 22(6)
DOI:
10.1017/S0954102010000799
B.C. Storey
David Fink
D. Hood
Mark Stevens et al
Glacial impacts on smoothed surfaces
Glacial clast morphology
Glacial clasts are typically subangular to subrounded, exhibit asymmetrical wear patterns, and often have characteristic polished and faceted faces with abundant striae oriented parallel to the long axis of the clast (Benn and Evans 2010).
Clasts can range from pebble (4–8 mm) to boulder (>256 mm) size and can be of varying lithologies. They can exhibit a variety of shapes but are characteristically subangular to subrounded, and clasts exhibiting bullet, pentagonal, and/or stoss and lee forms are considered especially diagnostic (Boulton 1978; Sharp 1982; Krüger 1984; Eyles 1993; Benn and Evans 2010). Clast shape and roundness can be visualized using RA-C40 plots developed by Benn and Ballantyne (1994), systematized using TRI-PLOT by Graham and Midgley (2000) and used by Atkins.
References
Adam WG, Knight PG (2003) Identification of basal layer debris in ice-marginal moraines, Russell Glacier, West Greenland. Quat Sci Rev 22:1407–1414
Benn DI, Evans DJA (1996) The interpretation and classification of subglacially deformed materials. Quat Sci Rev 15:23–52
Humlum O (1985) Changes in texture and fabric of particles in glacial traction with distance from source, Mýrdalsjökull, Iceland. J Glaciol 31:150–156
Krüger J (1984) Clasts with stoss-lee forms in lodgement tills: a discussion. J Glaciol 30:241–243
Lucchitta BK (1981) Mars and Earth: comparison of cold climate features. Icarus 45:264–303
Neukum G, Jaumann R, Hoffmann H, Hauber E, Head JW, Basilevsky AT, Ivanov BA, Werner SC, van Gasselt S, Murray JB, McCord T (2004) Recent and episodic volcanic and glacial activity on Mars revealed by the high resolution stereo camera. Nature 432:971–979
Nobles LH, Weertman J (1971) Influence of irregularities of the bed of an ice sheet on deposition rate of till. In: Goldthwait RP (ed) Till: a symposium. Ohio State University Press, Columbus, pp 117–126
Oberbeck VR, Marshall JR, Aggarwal H (1993) Impacts, tillites, and the breakup of Gondwanaland. NASA Publications. Paper 74. Available via Digital Commons.
Rampino ML (1994) Tillites, diamictites, and ballistic ejects of large impacts. J Geol 102:439–456
Sharp MJ (1982) Modification of clasts in lodgement tills by glacial erosion. J Glaciol 28:475–481
Van Hoesen JG, Orndorff RL (2004) A comparative SEM study assessing the micromorphology of glaciated clasts of varying lithologies. Can J Earth Sci 41:1123–1139
Wentworth CK (1936) An analysis of the shapes of glacial cobbles. J Sediment Petrol 6:85–96
How to cite
Cite this entry as:Van Hoesen J.G. (2015) Glacial Clast. In: Hargitai H., Kereszturi Á. (eds) Encyclopedia of Planetary Landforms. Springer, New York, NY.
Thursday, 9 June 2022
Dale, Judd and Engleheart versus Thomas
Antiquaries Journal
Being the Journal of the Society or Antiquaries of London
Vol. I January, 1921 No. 1, pp 19-41
The Excavations at Stonehenge, by Lt.»CoL Hawley, F.S.A.,
with an appendix by C. R. Peers, Secretary
Stonehenge : Interim Report on the exploration
By Lt.-Col. W. Hawley, F.S.A.(Main text excluded here.)
I should like to say something about the foreign stones.
Possibly they once stood in the Aubrey holes, for if the number
of the holes proves to be what we expect there would have been
just about sufficient of them to make the inner circle and horse-
shoe. The Aubrey circle was presumably earlier than Stonehenge,
perhaps of the Avebury period, and would have been of undressed
stones which were dressed on removal to their present position.
This of course does not bring us any nearer their place of
origin, but Mr. Tapp has very kindly undertaken to enlist the
services of the Geological Survey on this point.
In conclusion I should like to express my thanks to my friend
and colleague Mr. R. S. Newall for the great help he has given
throughout the work. He has made all the drawings, and the
excavation of the Aubrey holes was all his labour. Also I should
like to record my thanks to all the members of the Office of
Works staff for their constant and courteous assistance.
Discussion
Dr. H. H. Thomas, Petrographer to H.M. Geological Survey, said that he was well acquainted with small specimens and sections of the Stonehenge foreign stones, and, through the kindness of Colonel Hawley and Mr. Tapp, he had now had ample opportunity of studying the stones themselves. He had not altogether been unprepared to find that, with a few exceptions, all the 'bluestones ' were linked together by a common character, that made it practically certain that they had all been derived from the same area, and possibly from the same rock- mass. The bluestones are mainly diabases that are remarkable for the presence of white or pinkish irregularly bounded felspathic spots that vary from the diameter of a pea to twice or three times that dimension. The speaker pointed out that the occurrence of such felspathic spots was highly characteristic of, and as far as he was aware confined to, the diabase sills of the Prescelly Mountains of Pembrokeshire. Many such general localities as Devon, Cornwall, Wales, and Cumberland had been suggested by previous writers as producing similar rocks, but now he was glad to be able for the first time to point to a locality where there existed a rock absolutely identical with that of which the majority of the bluestones was composed ; and it occurred both in situ and as boulders comparable in size to the Stonehenge monoliths. Another highly characteristic rock of which there were two stones at Stonehenge, and of which an abundance of chips had been unearthed in recent excavations, was a beautifully banded spherulitic rhyolite. There should be no difficulty in identifying its source, and the speaker hoped shortly to be able to do so.
Mr. Dale quoted Professor Judd's opinion of 1901 that the blue- stones were glacial boulders left on Salisbury Plain ; and on one of the fragments exhibited he detected striae. Much had been collected for building purposes, and human transport from Wales would be a difficult matter.
Rev. G. H. Engleheart said the expert opinions left the meeting in a dilemma. The bluestones were declared not to be glacial, and even if they had been brought from Wales, it was difficult to believe that they were dressed only on arrival at Stonehenge. Transport of such an unnecessary weight argued lack of intelligence. In any case they were boulders and not quarried stones: one piece was striated, and he thought they were all of glacial origin.
Wednesday, 8 June 2022
Are there more Newall striated erratics?
Salisbury Plain glaciation -- a VERY long time ago.........
I'm increasingly convinced that the glaciation which I am suggesting for Salisbury Plain was considerably more extensive than the Anglian (c 450,000 years ago) and much older too. I wouldn't agree with Geoffrey Kellaway that it was in the Pliocene, but the glaciation that comes into the frame was the Happisburgh (or Cromerian) glaciation currently dated at around 650,000 years ago.
This is my post in which I lay out the arguments:
https://brian-mountainman.blogspot.com/2022/02/southern-england-where-is-glacial-limit.html
This, I think, is one of the most important posts I have ever done, and it explains why the evidence of glaciation is very patchy and subtle -- and difficult to interpret. After all, we are used to dealing with glacial traces in the landscape that are only 20,000 years old. the amount of denudation / sediment destruction / sediment dispersal that happens over more than half a million years is difficult to comprehend. And we should not be too surprised if all we can find today are some heavily weathered erratic boulders in the landscape (or in megalithic monuments like Stonehenge) and some smaller glacial erratics embedded in sediments.........
Tuesday, 7 June 2022
The malignant magic of Stonehenge: how a Roman Road story was transformed into a bluestone transport story
This is completely bonkers. Today in the media there is nice simple story about Dr Mark Merrony (once of Lampeter Univ and now of Wolfson College, Oxford) finding what he thinks is a Roman Road -- or bits of it -- up on Mynydd Preseli, slightly offset from the route of the modern footpath that we often refer to as the "Golden Road".
Rather, the story was nice and simple until the media hacks got to work on it and turned it into a story about the bluestone export trackway! The headline above is typical -- and it is a lie, because nobody has claimed to have discovered bluestone haulage tracks at all.
https://www.ancient-origins.net/news-history-archaeology/roman-road-wales-0016865
What Dr Merrony has done is to speculate that a prehistoric route was being used during the Roman period, and that it could well be “the same route ancient people transported the bluestones down to Stonehenge.” No facts, just a speculation tossed out in the knowledge that it would be seized upon by the more gullible and excitable sections of the media.The Westonzoyland giant boulder
On p 78 there is a reference to the famous giant boulder at Westonzoyland, called "the Devil's Upping Stock" until it was cut up and disposed of